Skip to content

packages/engine/scram-node/src/uncertainty_analysis.h

Provides functionality for uncertainty analysis with Monte Carlo method.

Namespaces

Name
scram
scram::mef
scram::core

Classes

Name
classscram::core::UncertaintyAnalysis <br>Uncertainty analysis and statistics for top event or gate probabilities with probability distributions of basic events.
classscram::core::UncertaintyAnalyzer <br>Uncertainty analysis facility.

Source code

cpp
/*
 * Copyright (C) 2014-2018 Olzhas Rakhimov
 * Copyright (C) 2023 OpenPRA ORG Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#pragma once

#include <utility>
#include <vector>

#include "analysis.h"
#include "probability_analysis.h"
#include "settings.h"

namespace scram::mef {  // Decouple from the implementation dependence.
class Expression;
}  // namespace scram::mef

namespace scram::core {

class UncertaintyAnalysis : public Analysis {
 public:
  explicit UncertaintyAnalysis(const ProbabilityAnalysis* prob_analysis);

  virtual ~UncertaintyAnalysis() = default;

  void Analyze() noexcept;

  double mean() const { return mean_; }

  double sigma() const { return sigma_; }

  double error_factor() const { return error_factor_; }

  const std::pair<double, double>& confidence_interval() const {
    return confidence_interval_;
  }

  const std::vector<std::pair<double, double>>& distribution() const {
    return distribution_;
  }

  const std::vector<double>& quantiles() const { return quantiles_; }

 protected:
  std::vector<std::pair<int, mef::Expression&>>
  GatherDeviateExpressions(const Pdag* graph) noexcept;

  void SampleExpressions(
      const std::vector<std::pair<int, mef::Expression&>>& deviate_expressions,
      Pdag::IndexMap<double>* p_vars) noexcept;

 private:
  virtual std::vector<double> Sample() noexcept = 0;

  void CalculateStatistics(const std::vector<double>& samples) noexcept;

  double mean_;  
  double sigma_;  
  double error_factor_;  
  std::pair<double, double> confidence_interval_;
  std::vector<std::pair<double, double>> distribution_;
  std::vector<double> quantiles_;
};

template <class Calculator>
class UncertaintyAnalyzer : public UncertaintyAnalysis {
 public:
  explicit UncertaintyAnalyzer(ProbabilityAnalyzer<Calculator>* prob_analyzer)
      : UncertaintyAnalysis(prob_analyzer), prob_analyzer_(prob_analyzer) {}

 private:
  std::vector<double> Sample() noexcept override;

  ProbabilityAnalyzer<Calculator>* prob_analyzer_;
};

template <class Calculator>
std::vector<double> UncertaintyAnalyzer<Calculator>::Sample() noexcept {
  std::vector<std::pair<int, mef::Expression&>> deviate_expressions =
      UncertaintyAnalysis::GatherDeviateExpressions(prob_analyzer_->graph());
  Pdag::IndexMap<double> p_vars = prob_analyzer_->p_vars();  // Private copy!
  std::vector<double> samples;
  samples.reserve(Analysis::settings().num_trials());

  for (int i = 0; i < Analysis::settings().num_trials(); ++i) {
    UncertaintyAnalysis::SampleExpressions(deviate_expressions, &p_vars);
    double result = prob_analyzer_->CalculateTotalProbability(p_vars);
    assert(result >= 0 && result <= 1);
    samples.push_back(result);
  }

  return samples;
}

}  // namespace scram::core

Updated on 2025-11-11 at 16:51:09 +0000